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1. Introduction

1.1 Concrete as a three-phase composite material

It has been recognized for many years that in cement composites (mortar, concrete, etc.) the
microstructure of paste in the vicinity of an inclusion (sand particle, coarse aggregate, etc.) is
significantly different from that of bulk cement paste. However, the interfacial effect has not
received special attention until recent study on the role of silica fume (SF) in the
high-performance concrete. Using scanning electron microscopy (SEM), Bentur and Cohen
(1987) demonstrated that in mortar the paste located at 50 pm and less from the sand particle
surface is a relatively porous region containing large calcium hydroxide crystals which have little
cementitious properties, forming the weakest link in mortar. This particular region is termed as .
the interfacial transition zone (ITZ). While, with 15% condensed silica fume addéd, the ITZ has
a homogeneous and dense microstructure, similar to that of the bulk paste. In the work of Cohen,
Goldman and Chen (1993), an experimental program was successfully developed to verify the
ability of silica fume to modify the microstructure of the interfacial transition zone (i.e. transition
zone modification), and thus the significant influence of the interfacial transition zone on the
overall behavior of mortar is exposed. These experimental events require that concrete materials
should be considered as a three phase composite, consisting of inclusion, interfacial transition

zone and bulk cement paste.

As for the inclusion problem, there is a considerable literature available in the field of
composite mechanics. Hashin (1962) first proposed a two-phase concentric-spheres model and
derived the bounds and expressions for its effective elastic moduli by an approximate method
based on the variational theorems of the theory of elasticity. A more general bounds approach
applicable to any macroscopically isotropic two-phase composite material was derived by Hashin
and Shtrikman (1963). To calculate the effective properties, Christinsen and Lo (1979) centered
their interest around macroscopically homogeneous, isotropic or transversely isotropic two phase

material, and proposed a model referred to as the three-phase model. This model consists of the



single composite sphere embedded in the infinite medium of unknown effective properties. A
generalized self consistent method was formalized to derive the exact expression for the effective
shear modulus of this model. Herve and Zaoui (1993) extended Christinsen-Lo’s work, and
obtained a general analytical solution for the effective bulk and shear modulus for an n-layered
spherical inclusion model. This n-layer model will be employed in the present work and more

details will be given later.

Zhao and Chen (1996a,19982) proposed a dual-layer inclusion model to model concrete
material as a three-phase composite material, and derived a close-form solution for the stress and
displacement fields of this model. The influence of the ITZ was exclusively investigated (Zhao
and Chen, 1996b). Then, the effective elastic moduli of this model was obtained (Zhao and
Chen, 198b,c), and its practical application and the significance of the ITZ was discussed by
Chen and Zhao (1995). Meanwhile, following Christensen and Lo’s work, Ramesh, Sotelino and
Chen (1995, 1996a,b) proposed a four-phase model for a three-phase compbsite, and derived the
effective moduli for the four-phase model. Application of this model is also made to estimate the
overall moduli of concrete or mortar. However, the ITZ in all these models is assumed to be
isotropic and homogeneous with a lower elastic moduli than that of bulk cement paste. Thus

there is a jump in material properties between the ITZ and the bulk cement paste.

1.2 Microstructure and micromechanical properties of ITZ

According to the work of Scrivener and Gartner (1988), there is a porosity gradient in the
transition zone, with increasing porosity as one approaches the aggregate particle. When the
computerized imagine analysis was used to quantify the porosity gradient in the transition zone,
it shows that there is no clear demarcation between the ITZ and the bulk cement paste.

Therefore, the material properties are not expected to have a jump between these two phases.

Some experimental tests indicate that the Young's modulus E is related to the porosity 1

by E=C/n*, where a and C are material constants. Hence, it is believed that the mechanical



properties in the ITZ are not uniform, but vary gradually as a function of distance from the

inclusion, approaching continuously to that of the bulk cement paste.

To this end, Lutz and Monteiro (1995) propose a spherical model considering the
variation of interface moduli. They assume the elastic moduli in the ITZ vary with radius
according to a power law. The primary reason for such an assumption is because a closed-form
expression for the overall effective bulk modulus of this model has been found by Lutz and
Zimmerman (1996). Using this model, the predicted overall bulk modulus is compared to the
data of Zimmerman et al. (1986), where mortar specimens were measured to obtain the effective
bulk modulus. They came to the conclusion that the modulus in the ITZ is about 15-50% lower
than that in the bulk cement paste. This conclusion is somewhat closer to the prediction of
Cohen, Lee and Goldman (1995) for silica fume (SF) mortar, where the average elastic moduli is
indicated about 12-52% less than that of SF paste, but does not match very well with that for
Portland cement (PC) mortar, where 26-85% is indicated. This fact gives us an impression that
the power law model, which by itself is a very localized damage model, can model the interface
in SF mortar quite well, but may be improper to model the interface in PC mortar. The objective
of this work is to propose several types of variation for the elastic moduli in the ITZ. Their
effects on the overall moduli are investigated and the behavior of the proposed models is

discussed for their applications to concrete materials.

In this work, the four-phase model proposed by Ramesh et al. (1995, 1996a,b) is modified
by considering the variation of the elastic moduli through the interface layer. Three types of
function (linear, quadratic and power law) are assumed to model the elastic moduli in the ITZ. A
general analytical solution for an n-layered inclusion model obtained by Herve and Zaoui (1993)
is utilized to predict the overall effective moduli of the modified four-phase model. Therefore,
the influence of different types of variation for the interface moduli as well as other parameters of
the proposed model on the overall behavior can be revealed. The inverse application of this
procgdure can be used to estimate the elastic moduli at the interface if the overall moduli are

given. This serves as a quantitative and non-destructive means of estimating the properties in the



ITZ.

2. Effective moduli of the modified four-phase model

2.1 Modified four-phase model with variation of interface moduli

We propose a micromechanical model for concrete material based on the four-phase model by
Ramesh et al. (1995, 1996a,b) as shown in Fig. 1. The aggregate particle is assumed to be
spherical with radius a. Outside the aggregate, there is an interfacial transition zone from inner
layer with radius a to outer layer with radius b. Beyond the ITZ, there is the bulk cement paste
which limited in a sphere with radius ¢. This individual composite sphere is then embedded in
an equivalent homogeneous medium. The material property for each constituent phase is also
shown in Fig. 1. The aggregate and bulk cement paste are taken to be isotropic homogeneous
with constant elastic moduli E, (k;,p,,v,) and E; (k;,,,V,) respectively. The interfacial
transition zone is considered as a radially-inhomogeneous region where the elastic modulus

E, (ky1,,v,) is taken as a function of the distance ¢ from the inclusion, with E,, (kzo, “20"’20) as
the modulus at = 0. In the present work, three types of function are proposed, i.e. linear,

quadratic and power law. They are described below respectively.

1). Linear model:

E,()=E,,*kt 1
Let Ez(b -a)=E,, we have
E.-E
k=3 20 @)
b-a

The linear function is the simplest zero-order continuous model, where

E,(#) does not smoothly approach E;, i.e. E2/(b -a)# E3/(b -a)=0.



2). Quadratic model:

E,(=E, +kt+k,t* 3)

Let E,(b-a)=E, and E,(b-a) =0, we have

2|E.-E E.-E
kl - ( 3 20), k2=_ 3 20 (4)
b-a (b-a)*

The quadratic function is the simplest first-order continuous model, where

E,(¢) approaches E; smoothly.

3). Power law model
Following the work of Lutz and Monteiro (1995), we assume the moduli

vary according to

AR
E,(1)=E, '(E3 —Ezo)( a_t) &)

a

in which E,~E,(b-a)=1%(E,-E,), W€ have

_In(100)

{1 0
a

E,(¢) in this model can approach continuously and smoothly in an

B

approximate manner, i.e. E,(b-a)~E;, EZ/(b -a)~0. Generally, B is around 8 for
concrete materials and this model is actually representing the most localized
damage zone among the three models and referred to as Power law model in the

present work.

Herein, the unknown parameter for the three models reduces to the elastic modulus E,,.
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Due to the incomplete process of hydration especially around the aggregate, E,, is expected to lie
between O and E;. We define E, =(1-D)E,, where D is a local damage parameter. When D=0,
we have E, =E., there is no damage in the ITZ or the model can be taken here as a two-phase
composite model. The three proposed models will converge to the same one. When D =1, we
have E,, = 0, there is a complete damage around the aggregate. We will show later that there is a

so-called “hole-effect” for this case.
2.2 Application of n-layered solution to present model

Herve and Zaoui (1993) obtained a general solution for the effective moduli of an n-layered
spherical inclusion model, which can be utilized to approximate the proposed models stepwisely.
The n-layered spherical inclusion model is shown in Fig. 2. Each phase is assumed to be
homogeneous and isotropic with elastic constants (u,,v,,k;) representing shear modulus,
Poisson’s ratio and bulk modulus respectively for phase I, which lies within the shell limited by
spheres with the radii R, | and R; (I € [1, n+1], Ry=0, R, —). They derived the elastic strain
and stress fields subjected to hydrostatic pressure and pure shear conditions at infinity. Then,
using the average strain method, which has been shown to be equivalent to Christinsen-Lo’s

energy condition, they obtained the effective bulk modulus & for the equivalent homogeneous

medium as

. 3k R2QYV-ap 07" -
3 A(n-1 (n-1)
3(Ranl )+Q21 )

where Ql;"'l) (I=1,2;j=1,2) are the elements of a 2x2 matrix @® ™" given by

n-1
Q(n—l)=HN(i) (8)

j=1



The effective shear modulus can be expressed by the following second-order equation:

4
3k — )
NP = J )]

3k, +4u -
3 K)R 3K,y

J jtl

2
A B +B B +C=0 (10)
K, Ky
where A, B and C are constants in terms of the elastic moduli as well as the dimension

parameters of each phase.

This general solution for (n+1)-phase model can be reduced to the classical two-phase
model of Hashin (1962) and three-phase model of Christinsen and Lo (1979) or the recent
four-phase model of Ramesh et al. (1995, 1996a,b) as well. With the bulk modulus and shear
modulus known, one can easily obtain the commonly-used engineering parameters £ and v as
follow:

_ Yku V=3k—2p
Ok+p’ 6k+2p

an

When the (n+1)-phase composite model is incorporated into the present models, we take
phase 1 as the aggregate, phase z as the bulk cement, and leave phase 2 to phase (n-1) with
stepwisely increased constant moduli to model the interfacial transition zone. The overall
effective moduli of the present model are then predicated from the solution of the n-layered
inclusion model as that of the equivalent homogeneous medium — phase (n+1). Theoretically,

the smooth variation of moduli can be modeled to any required accuracy by simply increasing n.



We should point out here that the proposed models as well as the n-layered inclusion
model require constant ratios of a/b and b/c for each individual composite sphere, independent of
its absolute size. This assumption requires particle size down to infinitesimal, while still having
a volume filling configu.ration. These models would be expected to predict reasonable results for
actual systems that have a rather fine gradation of size§, but it should not be expected to provide
reasonable results for systems containing single size particles at high concentrations (Christinsen,
1979). In other words, no overlap of the associated cement paste of any single aggregate is
considered, i.e. the interaction effects between particles are not accounted for in the present
models. It is important to keep this limitation in mind in estimating the possible error when

applying these models to experimental data.

3. Numerical results

In this section, we shall provide some numerical results of the application of the n-layer solution
to the modified four-phase models. Since the present work is limited to the stress level within
elastic stage, for the sake of simplicity, we take c=1. The relationship between the volume
fraction of each constituent component and the dimension size of each phase is the same as that
of the four-phase model of Ramesh et al. (1995, 1996a,b). If we define v, v, and v, as the

volume fraction of the aggregate, interface and bulk cement paste respectively, then we have

3 3
a= vl,b=‘/ v,+v, and v+, +v,=1.

In the following examples, we first investigate the sensitivity of the overall moduli to n
for the three models, then the influence of material and geometric characteristics of the inclusion
as well as that of the ITZ on the overall properties is studied. Finally, we apply the present

models to the data of Zimmerman et al. (1986) and that of Cohen et al. (1995).



3.1 Sensitivity of overall moduli to different types of function

The three types of function have been briefly described in the preceding section. To investigate
the sensitivity of the overall moduli predicted by these models to the number of n, = (n-2), we
choose the most critical damage case, i.e. D = 1, where the sensitivity can be greatly amplified.
Taking volume fraction v, = 0.5, v, = 0.3 and Young’s modulus E, = 5.0, E, = 1.0 with the
Poisson's ratio v, = 0.3 (/ = 1, 2, 3) as the known parameters, we can obtain the effective Young's

modulus as listed in Table 1 and shown in Fig. 3.

It is clear from Fig.3 that as n, increases, the three models predict smaller effective
moduli. There is an obvious drop for the effective moduli when n, increases from 1 to 10, then
turns to a rather slow decrease when n, increases beyond 10. The power law model exhibits a
less sensitivity to n,, with the predicated overall Ybung's modulus only 22% less when n,
increases from 1 to 100. However, the linear model is very sensitive to n, , with the overall
modulus up to 92% less. The quadratic model lies somewhere in between with a moderate

sensitivity.

Table 1 The effective Young's modulus with different types of n, functions

n, 1 2 3 4 5 10 15 20 50 100

Linear 1474 1273 1.180 1.122 1.083 0.979 0.930 0.899 0.817 0.768
Quadratic 1.804 1.626 1539 1.483 1444 1336 1.282 1.248 1.153 1.09%4
Powerlaw |2.024 1969 1932 1906 1886 1.826 1.793 1.771 1.705 1.660

It is also important to notice that power law model, which can be considered as the most
localized damage model among the threes, always predicts the highest overall Young's modulus,
and the linear model predicts the lowest value. This fact indicates that the less the damage zone,
the higher the overall moduli. This observation agrees well with that of Zhao et al. (1994b) and

Chen et al. (1995). In thé following, we will take n, =100 unless otherwise indicated.
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3.2 The effects of the interfacial transition zone

In the proposed models, the interfacial transition zone is controlled by two factors: the local
damage parameter D and the volume fraction v,. In this section, we shall study the influence of
these two factors on the overall moduli. The other parameters are taken to be the same as those

in Section 3.1.

3.2.1 The influence of local damage parameter D

In this study, we shall investigate the influence of the local damage parameter D on the Young’s
modulus. The predicted effective Young modulus with various D for the three models is listed in

Table 2 and also plotted in Fig. 4a, where v, = 0.3.

Table 2 The effective Young's modulus with various D values

D Linear Quadratic Power law
0.0 2.047 2.047 2.047
0.1 2.003 2.018 2.035
0.2 1.955 1.985 2.022
03 1.901 1.950 2.007
04 1.842 1.909 1.990
0.5 1.774 1.863 1.971
0.6 1.694 1.808 1.948
0.7 1.599 1.741 1.920
0.8 1.477 1.653 1.883
0.9 1.300 1.521 1.824
1.0 0.768 1.094 1.660

It is observed that as D increases from O to 0.9, the overall modulus decreases slowly,
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although the power law model always predicts the highest value. Then when D increases beyond
0.9 and up to 1.0, there is an obvious drop of the overall modulus, especially for the linear model.
The less sensitivity of the power law model to the local damage factor D is due to the fact that
the model itself has a extremely localized damage zone. This observation indicates that if the

interface is extremely localized, its influence on the overall modulus is negligible.

Figure 4b shows the results of the four-phase model, which can be reproduced by the
present models with n, = 1 (thus the term "four-phase model” in this paper specially refers to the
triple-layered inclusion model with the interface considered to be homogeneous). It can be seen
that there is no obvious drop of the overall modulus even when the local damage parameter D
approaches its maximum value, as revealed by the present models. This observation implies that

the four-phase model is not a suitable one for the seriously damaged case, i.e. D > 0.9.

3.2.2 The influence of the interface volume fraction
In this study, the effect of the interface thickness or the volume fraction, i.e. v, = (b>-a’)/c?, on the
overall modulus of the model is addressed. The predicated effective Young’s modulus is listed in

Table 3 and also shown in Fig. 5a, where D = 1.

Table 3 The effective Young’s modulus with various volume fraction v,

v, Linear Quadratic Power law
0.0 2.047 2.047 2.047
0.1 1.219 1.515 1.870
0.2 0.933 1.257 1.749
0.3 0.768 1.094 1.660
04 0.654 0.976 1.589
0.5 0.568 0.885 1.532
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It is observed that the overall modulus has a large reduction when the interface volume
fraction increases from O to 0.2, as revealed by the linear and quadratic models, then turns to a
moderate reduction for further increase of the interface volume fraction. Again, the power law
model turns out to be less sensitive to the effects of the interface volume fraction due to its

localized damage zone feature.

From the result of the four-phase model, plotted in Fig. 5b, it shows that the four-phase
model cannot detect the obvious drop of the overall moduli if the interface fraction increases
from 0 to 0.2, and always predicts a much higher value for the overall modulus than that from the

present models if we take an arithmatic average value for the interface modulus.

3.3 The effects of aggregate type

It is well known that the aggregate type has a considerable influence on the properties of concrete
materials. In this section, we shall investigate the effects of the inclusion concentration v, and
stiffness E, on the effective moduli of the proposed models. The other parameters are taken to be

the same as those in Section 3.1.
3.3.1 The effect of aggregate concentration

The effect of aggregate concentration, i.e. v, = a’/c’, on the overall modulus of the proposed
models is investigated here. The predicted effective Young’s modulus is listed in Table 4 and

also shown in Fig. 6a, where E, =5.0.
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Table 4 The effective Young’s modulus with different aggregate concentration v,

v, Linear Quadratic Power law
0.0 0.904 0.962 0.999
0.1 0.745 0.861 1.042
0.2 0.716 0.880 1.148
0.3 0.717 0.930 1.286
04 0.736 1.002 1.455
0.5 0.768 1.094 1.660
0.6 0.811 ‘ 1.206 1.906
07 0.866 | 1341 2201

In the case of D = 1, there is a totally damaged zone around the aggregate, the increase of
the aggregate concentration has almost no contribution to the overall moduli as revealed by the
linear and quadratic models. However, the power law model fails to demonstrate this
phenomenon clearly. Similarly, the prediction of the four-phase model, as shown in Fig. 6b,

cannot reveal this special phenomenon.
3.3.2 The effects of aggregate stiffness

In this study, we first investigate the effects of aggregate stiffness with D = 0.5. Fig. 7a shows
the influence of the aggregate stiffness E, increasing from 0 to 10E,. It can be seen that the

prediction from the three models agree very well for this case.

However, when we take the critical case, i.e. D = 1, the difference of these models is
revealed as shown in Fig. 7b with the results listed in Table 5. For this case there is a complete
damage around the aggregate, the increase of the aggregate stiffness has no obvious effects on the
overall moduli except that this increase is made from zero to that of the bulk cement paste E,.

This phenomenon is the so-called “hole-effects” and revealed quite well by the linear and
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quadratic models, where two horizontal lines are predicted. The power law model again fails in

this special case.

Table 5 The effective Young’s modulus with various aggregate stiffness E,

E, Linear Quadratic Power law
0.0 0.187 0.222 0.265
1.0 0.585 0.734 0.912
2.0 0.680 0.906 1.226
3.0 0.725 0.998 1.423
4.0 0.751 1.055 1.559
5.0 0.768 1.094 1.660
6.0 0.780 1.122 1.737
7.0 0.789 1.144 1.798
8.0 0.796 1.161 1.848
9.0 0.801 1174 1.890
10.0 0.806 1.186 1.925

From Fig. 7c where the prediction from the four-phase model is plotted, we can see that

the four-phase model cannot reveal the hole-effect very well.

3.4 Application to the data of Zimmerman et al. (1986)

In the previous sections, we have studied the behavior of the proposed models for predicting the

overall moduli in terms of that of the constituent components. In this section, we shall apply

these models to the experimental data reported by Zimmerman et al. (1986).

In their work, acoustic wave measurements were performed on mortar specimens with 0-

60% sand concentration. The effective bulk modulus can be found from the measured
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wavespeeds using the relationship established in their work. However, these experimental results
are found to lie below the Hashin-Shtrikman lower bound, which can be reproduced by the
proposed models with D = 0. Since the Hashin-Shtrikman bounds are developed for a two-phase
composite material, such violation can be accepted by considering concfete material to be of a

three-phase composite material (Nilsen and Monteiro, 1993).

In order to rationalize the test fact, Lutz and Monteiro (1995) apply the power law model
to these data, using the closed-form expression obtained by Lutz and Zimmerman (1996) to
predict the bulk modulus. Their application leads to the conclusion that the modulus at the

interface is about 15-50% lower than in bulk cement paste (i.e. D = 0.15-0.5).

The sand grains used in the mortar specimens tested by Zimmerman et al. (1986) had
radii of about 50 pm, according to the SEM photographs. While it is always difficult to
determine the volume fraction v, for ITZ, not to mention that there is no information about the
interfacial transition zone reported in their work at that time. To be consistent to the assumption
made in the proposed models, the volume fractibn v, for the ITZ, in the present models should be
chosen not exceeding 0.4, since the aggregate concentration v, will approach 0.6. The material

parameters for the mortar specimens are listed in Table 6 for reference.

Table 6 Material parameters of mortar specimens tested by Zimmerman et al. (1986)

Material k (GPa) u(GPa) | E(GPa) v p (kg/m)
Sand inclusion 44.0 37.0 86.7 0.17 2700
Cement paste 20.8 113 | 287 0.27 2120

In Fig. 8a-1, we present the prediction of the proposed three models for the effective bulk
modulus as functions of the aggregate concentration v, for various values of D, with v, ranging
from 0.1 to 0.4. By comparing the experimental results of Zimmerman et al. (1986), we can

locate the range as well as the best fitting value for the local damage parameter D. They are
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summarized in Table 7, where the best fitting values are indicated in parentheses.

Table 7 The estimated local damage parameter D based on Zimmerman et al. tests (1986)

v, Linear Quadratic Power law
0.1 0.3-0.9(0.8) 0.5-0.95 (0.9) 0.8 - 1.0+ (1.0+)
0.2 ' 0.2 -0.75 (0.55) 03-0.8 (0.7) 0.6 - 1.0+ (0.95)
0.3 0.1-0.6 (0.4) 0.2-0.8 (0.6) 0.5-1.0 (0.9)
04 0.1-0.5(0.35) - 0.2-0.7 (0.5) 0.4 - 0.95 (0.85)

From Table 7, we can see that the linear model predicts the smallest value for local
damage parameter D, the quadratic predicts a moderate value, while the power law model
predicts the largest value. In other words, a more localized interface layer can bear a more

serious local damage to remain a same overll moduli, as demonstrated in Fig. 9.

The obviously different prediction between the present power law model and that in Lutz-
Monteiro’s work might be due to the choice of the interface thickness. In their work, a = 50 um,
b-a =40 uym. Such a choice must lead to the ;)verlap of the associated cement paste of each
particle when applied to the case with sand concentration up to 0.6. Since the work of Lutz and
Zimmerman (1996) is not yet accessible to the authors, we cannot verify if such a choice meets
the requirement of their model. In the present work, we prefer to keep the consistency in the

proposed models and leave the error to the difference between the model and the actual case.
3.5 Application to the data of Cohen et al. (1995)

In the previous section, the proposed models are applied to predict the effective bulk modulus, In
this study, we shall apply the models to predict the effective elastic modulus and to compare it

with the data of Cohen et al. (1995).
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In their work, the average values of the dynamic moduli at the interface are estimated
using the logarithmic mixture rule. By assuming the interface volume fractions, it indicates that
the elastic modulus at interface is 26-85% less than that of bulk cement paste for PC mortar, and

12-52% less for SF mortar.

The volume fraction for the sanci particles is kept to be constant at 37%. The dynamic
modulus of elasticity is measured for PC mortar (4.2x10° psi), PC paste (2.7x10° psi), SF
mortar (4.4x10° psi), SF paste (2.5x10° psi) and sand particle ( 14x10° psi). In this study, we
take the Poisson's ratio v = 0.17 for sand particle, v = 0.27 for PC paste and v = 0.37 for SF paste.

In Fig. 10, we present the prediction of the proposed three models for the effective elastic
modulus as functions of the local damage parameter D, with the interface fraction v, = 0.54 for
PC mortar and v, = 0.1 for SF mortar. By comparing the experimental results, i.e. 4.2x10° psi for
PC mortar and 4.4x10° psi for SF mortar, we can determine the local damage parameters for the

three models as listed in Table 8.

From the prediction of the proposed models, we can conclude that the elastic modulus at
the interface is 23-69% lower than that of bulk paste for PC mortar, and 12-36% lower for SF
mortar. This conclusion agrees reasonably well with that of Cohen et al. (1995), in which the
logarithmic mixture rule is applied to estimate the avefage elastic modulus at the interface. We
can also see that silica fume in mortar reduces the interface volume fraction and the extent of
damage (thus the lower of the local damage parameter). These experimental events can be

explained here by the proposed models.

Table 8 The estimated local damage parameter D based on Cohen et al. tests (1995)

Linear Quadratic Power law
PC mortar 0.23 0.33 0.69
SF mortar 0.12 0.17 0.36
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4. Conclusions and discussions

In this work, we have proposed three models to represent different variation of the interface
moduli. Taking the advantage of the available n-layer solution and incorporating it into the
present models, the behavior of the three models is investigated and compared. The effects of
the interface revealed by these models can be used to explain some experimental events. Some

characteristics of this investigation are summarized as follows:

1) The more sensitivity of the linear model to the number », than the power law
model indicates that when the thickness of the interface layer is appreciable, the
effects of the variation of the elastic moduli within the ITZ become important,

otherwise large error may rise.

2) With the same initial damage parameter D, the power law model always
predicts the highest overall modulus and the linear model predicts the lowest
value. On the other hand, if the overall modulus is given, the power law model
predicts the most serious initial damage at the interface while the linear and

quadratic models predict a moderate initial damage around the aggregate.

3) When the damage parameter D increases from O to 0.9, the overall modulus
decreases slowly in all three models. When D increases beyond 0.9 and up to 1.0,
there is an obvious drop of the overall modulus, especially for the linear model.
The less sensitivity of the power law model, which by itself a localized damage
model, to the damage parameter D implies that if the interface layer is extremely

thin, its influence on the overall modulus is negligible.

4) When D = 1, which means a complete damage around the aggregate, the
increase of aggregate concentration and stiffness has almost no contribution to the

overall modulus, the so-called hole-effect. This phenomenon is revealed quite
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well by the linear and quadratic models, while the power law mode] fails in this

special case.

5) When comparing the prediction of the proposed model to the experimental data
by Cohen, Lee and Goldman (1995), we find that the elastic modulus at the
interface is about 20-70% lower than that in bulk paste for Portland cement, and
10-40% lower for silica fume cement. This procedure serves as a quantitative and
non-destructive means of estimating the properties in the interfacial transition

zone.

From the present work, we have realized that much more remains to be learned about the
microstructure of the concrete materials, especially the interfacial transition zone, in order to
propose a reasonable micromechanical model, which can in turn help to predict the overall

mechanical properties.
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